Skip to main content

Structure of Drive System

Figure 1: Structure of drive system

Load is the most important component. All other units are arranged to serve the requirement of the load. Any design begins with a list of specifications for the load. This depends on the type of the load and its environment. We need to answer several questions before preparing specifications.

Eg:
  • Whether one, two or four quadrant operation is necessary
  • Whether servo or adjustable speed action is necessary
  • Whether breaking energy is to be dissipated or returned back to the utility
  • Whether a soft or hard start is suitable
  • What are the range of speed and the resolution of the speed control?
  • What are maximum torque?
  • Is there a space restriction?
  • Is there a noise level restriction?
  • Is there some starting current restriction?
  • Is there any EMI (Electro Magnetic Interference) restriction?
  • Is there supply end restrictions? (Eg: Total Harmonic Distrotion)?
  • Whether the energy efficiency is a prime consideration
and many more.

The components in the drive system are independent. The load to some extent can suggest the type of motor required. The motor selection it self is a challenging task that requires good understanding and skill about the performance of different motors. This difficulty arise due to the availability of a large count of competitive motor types. The power electronic converters is often specified by the motor selected. For DC motors we need one type of converter but for AC motors we need a different type converter. A stepper motor needs a totally different converter and so on.

Eg:
Figure 2: Table of Choices of power electronic converter

Additional stages may also be necessary on top of the basic converter circuit to accommodate such features as returning breaking energy back to the supply network etc. In all the power converters listed in the table DC was used as input source. This is not because the primary power available from the power system is DC but the common practice of a diode rectifiers unit to interface the power system (This is done to minimize the distortions at the supply end).
Figure 3: AC to DC Converter

Microelectronic control unit is central to all other components in the system and it co-ordinates the activities of all. It receives feedback from the load and motor and dictates terms to the power electronic converter according to the user input. The microelectronic control unit is a computer. It can be a micro-controller or is some cases a PLC. Discretely assembled microelectronic control units too are not common.

Read More:

Comments

Popular posts from this blog

Power Electronics And 3Phase Drives

3 Phase motor drives and DC drives dominate the industry in most applications from low to high power. (Single phase drives usually take care of the low power end.) Basic 3Phase motors are: 3Phase induction cage rotor motor 3Phase induction wound rotor motor 3Phase synchronous motor 3Phase induction motors are used widely to serve general purpose applications, both adjustable speed and servo drives. 3Phase synchronous motor is found in special applications, mostly as servo drives. Some very large power adjustable speed drives also prefer synchronous motors because of the possibility of using low cost load-commutated-inverters (LCI) built from thyrestors.

Single Phase Drives - Servo Control Mode

Servo control use current control for rapid adjustment of motor torque. Voltage control will not be good for servo applications due to inherent delays before the control passes to adjust current. In PWM it is a delay in the motors electrical time constant L/R; in square wave control it is a sequence of delays at the capacitor of DC-link, electric time constant L/R of motor etc. To obtain current control we use, so called, "current controlled PWM". There too, we have two options; (a). Hysteresis current control mode (b). Fixed frequency current control mode (a). Hysteresis current control mode This PWM acts to constrain the motor current I to a specified shape and amplitude, as suggested by the outer loops (e.g. Speed loop) of the closed loop control system. This requires motor current feedback as an input to the PWM modulator. Desired current is the other input.Switching principle is,

Single Phase Drives - Low Speed Control Mode

Power circuit for single phase drive - low speed control mode At low speeds, motor voltage V should not have lower-order harmonics. An ideal would be a pure sinusoidal voltage but a compromise is acceptable. The square wave voltage used in the high speed mode contains lower order harmonics of order 3,5,7,9...etc. So we con not use it for low speed operations. If attempted we will get some wobbling speed perturbations at low speeds. We use switching strategy known as PWM (Pulse Width Modulation) to deliver near sinusoidal voltage for the motor. We have two operations of PWM. (a). Bipolar PWM (b). Unipolar PWM